
• A simple learning-free attack model works sufficiently well
• Attack performance highly depends on:

• The size of the dataset
• Model structure
• Amount of knowledge about the victim model

• Differential privacy defense is effective against real-world
MI attack but compromises utility and efficiency

• Code and models are available on Github:
• https://github.com/DingfanChen/GAN-Leaks

Attacker finds the best reconstruction of a query sample given different types of access to 
the victim generator.

• Insight:
• Smaller reconstruction error for training data.

• Generic Model:
• Optimization problem

• Objective:

• Different types of access:
(1) Full black-box generator KNN search
(2) Partial black-box generator Powell's conjugate direction method
(3) White-box generator L-BFGS quasi-Newton method

Gen samples

Dis
real data

 (1) Full black-box generator
 (2) Par tial black-box generator
 (3) White-box generator
 (4) Accessible discr iminator (full model)

real/fake?

• What information does the attacker know?
• White-box /black-box ?
• Which GANs’ components are accessible?

( : latent code; Gen: Generator; Dis: Discriminator)
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• Generative adversarial Networks (GANs) have been largely used 
on privacy sensitive datasets, e.g., face images and medical 
records

• However, existing works mainly focus on attacks against 
discriminative models and the privacy risk of generative models 
have not yet been investigated systematically

• Our work: Membership Inference Attack against GANs
(whether a query sample has been used to train a GAN model?)

• Crucial to understand and control privacy leakage; provides 
insights for privacy-preserving data sharing

• Taxonomy
• Categorize attack scenarios against generative models
• Benchmark future research 

• Novel attack models
• Generic; easy-to-implement; effective; theoretically

grounded

• Extensive evaluation
• 3 datasets with diverse data modalities, 5 victim models, 4

attack scenarios … • Problem: 
• the reconstruction error is query-dependent ('hard' samples, underrepresented samples)

• Solution: Attack Calibration

• Train a reference model with:
- relevant but disjoint dataset
- irrelevant network architecture to victim model

• Theory: near-optimal under a Bayesian perspective3

Attack Calibration

• 3 Datasets: 
CelebA (face), MIMIC III (medical), Instagram (location)

• 5 GAN Models: 
PGGAN, WGANGP, DCGAN, VAEGAN, MedGAN

• 2 Baselines:
LOGAN1, MC2

• Results:
• Attack

Experiment results

Motivation

Contributions

Generic Attack Model

(2) MIMIC III, Instagram (non-image dataset)

• Defense: (DP-SGD)
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Summary
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