

GAN-Leaks: A Taxonomy of Membership Inference Attack against Generative Models

Dingfan Chen¹

Ning Yu^{2,3}

Yang Zhang¹

Mario Fritz¹

¹CISPA Helmholtz Center for Information Security, Germany ²Max Planck Institute for Informatics, Germany

³University of Maryland, College Park

Motivation

 Generative adversarial Networks (GANs)¹ have been largely used on privacy sensitive datasets, e.g., face images and medical records.

Motivation

- Generative adversarial Networks (GANs)¹ have been largely used on privacy sensitive datasets, e.g., face images and medical records.
- Our work: Membership Inference Attack against GANs (whether a query sample x_i has been used to train a GAN model?)
- Crucial to understand and control privacy leakage; provides insights for privacy-preserving data sharing

Contributions

Taxonomy

- categorize attack scenarios against generative models
- benchmark future research

Novel attack models

• generic; easy-to-implement; effective; theoretically grounded

Extensive evaluation

 3 datasets with diverse data modalities, 5 victim models, 4 attack scenarios ...

- white-box □/black-box ■?
- which GANs' components are accessible?

- white-box □/black-box ■?
- which GANs' components are accessible?

- white-box □/black-box ■?
- which GANs' components are accessible?

¹ Hayes et al., "LOGAN: Evaluating Privacy Leakage of Generative Models Using Generative Adversarial Networks", PoPETs 2019 ² Hilprecht et al., "Monte Carlo and Reconstruction Membership Inference Attacks against Generative Models", PoPETs 2019

- white-box □/black-box ■?
- which GANs' components are accessible?

	Latent code	Generator	Discriminator
(1) Full black-box ^{1,2}	X		X
(2) Partial black-box	✓		X
			:

¹ Hayes et al., "LOGAN: Evaluating Privacy Leakage of Generative Models Using Generative Adversarial Networks", PoPETs 2019 ² Hilprecht et al., "Monte Carlo and Reconstruction Membership Inference Attacks against Generative Models", PoPETs 2019

- white-box □/black-box ■?
- which GANs' components are accessible?

	Latent code	Generator	Discriminator
(1) Full black-box ^{1,2}	×		X
(2) Partial black-box	✓		X
(3) White-box	✓		X

¹ Hayes et al., "LOGAN: Evaluating Privacy Leakage of Generative Models Using Generative Adversarial Networks", PoPETs 2019 ² Hilprecht et al., "Monte Carlo and Reconstruction Membership Inference Attacks against Generative Models", PoPETs 2019

- white-box □/black-box ■?
- which GANs' components are accessible?

	Latent code	Generator	Discriminator
(1) Full black-box ^{1,2}	×		X
(2) Partial black-box	✓		X
(3) White-box	✓		×
(4) Accessible full model ¹	✓		✓

¹ Hayes et al., "LOGAN: Evaluating Privacy Leakage of Generative Models Using Generative Adversarial Networks", PoPETs 2019 ² Hilprecht et al., "Monte Carlo and Reconstruction Membership Inference Attacks against Generative Models", PoPETs 2019

Insight:

Smaller reconstruction error for training set data.

Generic Model: optimization problem

$$\mathcal{R}(x|\mathcal{G}_v) = \mathcal{G}_v(z^*)$$

$$z^* = \underset{z}{\operatorname{argmin}} L(x, \mathcal{G}_v(z))$$

Objective:

minimize
$$L(x, \mathcal{G}_v(z)) = \lambda_1 L_2(x, \mathcal{G}_v(z)) + \lambda_2 L_{\text{lpips}}(x, \mathcal{G}_v(z)) + \lambda_3 L_{\text{reg}}(z)$$

Insight:

Smaller reconstruction error for training set data.

• Generic Model:

optimization problem

$$\mathcal{R}(x|\mathcal{G}_v) = \mathcal{G}_v(z^*)$$

$$z^* = \underset{z}{\operatorname{argmin}} L(x, \mathcal{G}_v(z))$$

Objective:

minimize
$$L(x, \mathcal{G}_v(z)) = \lambda_1 L_2(x, \mathcal{G}_v(z)) + \lambda_2 L_{\text{lpips}}(x, \mathcal{G}_v(z)) + \lambda_3 L_{\text{reg}}(z)$$

Different settings:

(1) Full black-box

KNN search

(2) Partial black-box

Powell's conjugate direction method

(3) White-box

L-BFGS quasi-Newton method

Observe:

Reconstruction error affected by the appearance

Observe:

Reconstruction error affected by the appearance

• Solution:

Attack Calibration

$$L_{\text{cal}}(x, \mathcal{R}(x|\mathcal{G}_v)) = L(x, \mathcal{R}(x|\mathcal{G}_v)) - L(x, \mathcal{R}(x|\mathcal{G}_r))$$
victim model reference model

Observe:

Reconstruction error affected by the appearance

Solution:

Attack Calibration
$$L_{\mathrm{cal}}\big(x,\mathcal{R}(x|\mathcal{G}_v)\big) = L\big(x,\mathcal{R}(x|\mathcal{G}_v)\big) - L\big(x,\mathcal{R}(x|\mathcal{G}_r)\big)$$
 victim model reference model

Theory: near-optimal under a Bayesian perspective¹

3 Datasets

• Face: CelebA

Location: Instagram

Medical: MIMIC III

5 GAN models

PGGAN, WGANGP, DCGAN, VAEGAN, MedGAN

2 Baselines

• LOGAN¹, MC²

Systematic Analysis

dataset size, model architectures, attack settings, defense...

Metric

AUC (Area Under the ROC Curve)
larger AUC → better attacker

¹ Hayes et al., "LOGAN: Evaluating Privacy Leakage of Generative Models Using Generative Adversarial Networks", PoPETs 2019 ² Hilprecht et al., "Monte Carlo and Reconstruction Membership Inference Attacks against Generative Models", PoPETs 2019

Attack effectiveness — Dataset size

Attack effectiveness — Dataset size

Attack effectiveness — Dataset size

medical dataset: high privacy risk (AUC > 0.8) for ~2k training samples

Attack effectiveness — Attack settings, model architecture

face dataset: 20k training samples

Attack effectiveness — Attack settings, model architecture

face dataset: 20k training samples attacks are effective in practical settings

More Details in the paper

GAN-Leaks:

A Taxonomy of Membership Inference Attack against **Generative Models**

Dingfan Chen¹

Ning Yu^{2,3} Yang Zhang¹

Mario Fritz¹

Code and Models are available on Github

https://github.com/DingfanChen/GAN-Leaks

¹CISPA Helmholtz Center for Information Security, Germany

²Max Planck Institute for Informatics, Germany

³University of Maryland, College Park