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* Generative adversarial Networks (GANs)! have been largely used on
privacy sensitive datasets, e.g., face images and medical records.

1T Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014
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* Generative adversarial Networks (GANs)! have been largely used on
privacy sensitive datasets, e.g., face images and medical records.

* Our work: Membership Inference Attack against GANs
(whether a query sample Z; has been used to train a GAN model?)

* Crucial to understand and control privacy leakage; provides insights
for privacy-preserving data sharing

1T Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Contributions

* Taxonomy
* categorize attack scenarios against generative models
* benchmark future research

* Novel attack models
* generic; easy-to-implement; effective; theoretically grounded

e Extensive evaluation
« 3 datasets with diverse data modalities, 5 victim models, 4 attack
scenarios ...
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 white-box O/black-box l?
 which GANs’ components are accessible?
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 white-box O/black-box B ?
 which GANs’ components are accessible?
(z: latent code; Gen: Generator; Dis: Discriminator)
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THayes et al., “LOGAN: Evaluating Privacy Leakage of Generative Models Using Generative Adversarial Networks”, POPETs 2019
2 Hilprecht et al., “Monte Carlo and Reconstruction Membership Inference Attacks against Generative Models”, POPETs 2019
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 white-box O/black-box B ?
 which GANs’ components are accessible?
(z: latent code; Gen: Generator; Dis: Discriminator)
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(2) Partial black-box v ] X :

THayes et al., “LOGAN: Evaluating Privacy Leakage of Generative Models Using Generative Adversarial Networks”, POPETs 2019
2 Hilprecht et al., “Monte Carlo and Reconstruction Membership Inference Attacks against Generative Models”, POPETs 2019



Taxonomy

 white-box O/black-box B ?
 which GANs’ components are accessible?
(z: latent code; Gen: Generator; Dis: Discriminator)
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THayes et al., “LOGAN: Evaluating Privacy Leakage of Generative Models Using Generative Adversarial Networks”, POPETs 2019
2 Hilprecht et al., “Monte Carlo and Reconstruction Membership Inference Attacks against Generative Models”, POPETs 2019



Taxonomy

 white-box O/black-box B ?
 which GANs’ components are accessible?
(z: latent code; Gen: Generator; Dis: Discriminator)

real/fake?
C Latent code Generator Discriminator:
(1) Full black-box:2 X _ X E
1(2) Partial black-box v B X
: v H X :
(4) Accessible full model! v O v E

THayes et al., “LOGAN: Evaluating Privacy Leakage of Generative Models Using Generative Adversarial Networks”, POPETs 2019
2 Hilprecht et al., “Monte Carlo and Reconstruction Membership Inference Attacks against Generative Models”, POPETs 2019
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Method

* InSight: L2 §§ Dirain
Smaller reconstruction error for training / R(j?'gv)
set data. . =
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* Generic Model: .. ...

optimization problem Y

R(z|Gy) = Gu(27) Py

train

z* = argmin  L(x,G,(2))

z

* Objective:
minimize L(:I:, (jv(z)) =\ Lo (a:, Qv(z)) + A2 Lipips (x, Qv(z)) + A3Lyeg(?)

z
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* Generic Model: - . ...
optimization problem Py,
R(wllgv)

R(z(Gy) = Gu(2") P
z* = argmin  L(x,G,(2))

z

* Objective:
minimize L(.cz:, (jv(z)) =\ Lo (a:, gv(z)) + A2 Lipips (x, Qv(z)) + A3Lyeg(?)

z

* Different settings:

(1) Full black-box KNN search

(2) Partial black-box Powell's conjugate direction method

L-BFGS quasi-Newton method



Method

Observe:
Reconstruction error affected by the appearance
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Method

* Observe:
Reconstruction error affected by the appearance
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« Solution: | Attack Calibration
Lcal(az R(w\gv)) = (x R(m\gv)) (x R(x|gr))

victim model reference model
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* Observe:
Reconstruction error affected by the appearance
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« Solution: | Attack Calibration
Lcal(az R(w\gv)) = (x R($\Qv)) (x R(x|gr))

victim model reference model

 Theory: near-optimal under a Bayesian perspective’

1 Sablayrolles et al., “White-box vs Black-box: Bayes Optimal Strategies for Membership Inference”, ICML 2019



Experiments

3 Datasets
* Face: CelebA
* Location: Instagram
* Medical: MIMIC I

5 GAN models
« PGGAN, WGANGP, DCGAN, VAEGAN, MedGAN

2 Baselines
« LOGANT' MC2

 Systematic Analysis
* dataset size, model architectures, attack settings, defense...

Metric
AUC (Area Under the ROC Curve)
AUC attacker

THayes et al., “LOGAN: Evaluating Privacy Leakage of Generative Models Using Generative Adversarial Networks”, POPETs 2019
2 Hilprecht et al., “Monte Carlo and Reconstruction Membership Inference Attacks against Generative Models”, POPETs 2019
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 Attack effectiveness —Dataset size
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medical dataset: high privacy risk (AUC >0.8) for ~2k training samples



Experiments

* Attack effectiveness — Attack settings, model architecture

10 CelebA

full black-box (LOGAN)
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face dataset: 20k training samples



Experiments

* Attack effectiveness — Attack settings, model architecture

1.0 CelebA
full black-box (LOGAN)
0.9 full black-box (MC)
full black-box (ours calibrated)
0.8 partial black-box (ours calibrated)
O white-box (ours calibrated)
=2 0.7 accessible full model (LOGAN/MC)
0.6
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PGGAN  WGANGP  DCGAN VAEGAN VAE

face dataset: 20k training samples

attacks are effective in practical settings
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