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Problem

e Membership inference attack (MIA) 1 — an adversary tries to
identify whether a given sample was included in the target model’s
training set

1 Shokri, et al., “Membership inference attacks against machine learning models”, S&P 2017



ICLR

International Conference On
Learning Representations

Problem

e Membership inference attack (MIA) 1 — an adversary tries to
identify whether a given sample was included in the target model’s
training set

1 Shokri, et al., “Membership inference attacks against machine learning models”, S&P 2017



ICLR

International Conference On

Learning Representations

5 Shokri et al. 2017

Membership inference attacks against machine learning models

Nasr et al. 2018

Comprehensive privacy analysis of deep learning: Passive and active
- White-box inference attacks against centralized and federated learning.

: Yeom et al. 2018
: Privacy risk in machine learning: Analyzing the connection to overfitting

: Salem et al. 2019

: Ml-leaks: Model and data independent membership inference attacks and
: defenses on machine learning models. :

: Sablayrolles et al. 2019
: White-box vs black-box: Bayes optimal strategies for membership
- Inference.

: Song et al. 2020
: Systematic evaluation of privacy risks of machine learning models

: Rezae et al. 2021
: On the Difficulty of Membership Inference Attacks

: Choo et al. 2021
: Label-only membership inference attacks.
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e Membership inference attacks are effective
® Given only black-box access
e Or even partially observed output predictions

e Such attacks are pervasive in various data domains,
posing privacy threats to individuals

® £.g., iImages, medical data, transaction records
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: o Membership inference attacks are effective
: e Given only black-box access
e Or even partially observed output predictions

e Such attacks are pervasive in various data domains,
posing privacy threats to individuals

® £.g., iImages, medical data, transaction records

¢ Existing defenses inevitably compromise model utility
for a reasonable level of defense effectiveness

e QOur work for the first time addresses a wide range of
attacks while preserving (or even improving) the
model utility.
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Approach

1 Yeom et al., “Privacy risk in machine learning: Analyzing the connection to overfitting”, CSF 2018
2 Sablayrolles, et al., “White-box vs black-box: Bayes optimal strategies for membership inference”, ICML 2019 5
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e 5 Datasets with diverse modalities
e CIFAR-10, CIFAR-100, CH-MNIST, Texas100, Purchase100

e 6 Attack methods
e White-box: Grad-x, Grad-w
e Black-box: NN, Loss, Entropy, M-Entropy

e 8 Defense baselines

e Memguard, Adv-Reg, Early-stopping, Dropout, Label-smoothing, Confidence-
penalty, (Self-)Distillation, DP-SGD

e Evaluation metrics
e Utility: Test accuracy of target models
e Defense effectiveness: Attack accuracy; Attack AUC
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Results
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Results
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More details in the paper

RelaxLoss: Defending Membership Inference
Attacks without Losing Utility

Dingfan Chen' Ning Yuz23.4 Mario Fritz'

. Please visit our github repository for source code:

https://github.com/DingfanChen/RelaxLoss

Contact:
Dingfan Chen, dingfan.chen@cispa.de
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